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Abstract—Part 1 of this two-part paper describes the impact
that uncertainty has on the design and analysis of price formation
policies in the non-convex auctions conducted by U.S. wholesale
electricity market operators. Using first a toy model and then
a large-scale test system, Part 2 demonstrates the difference in
prices under the idealized benchmark of ex ante convex hull
pricing defined in Part 1 versus existing methods, in particular
documenting the potential for suppression of volatility and
therefore under-compensation of flexibility by existing methods.
The examples highlight that inefficient spot price formation
can induce inefficient forward commitments of generators, ne-
cessitating out-of-market intervention to restore a reliable and
efficient operating plan. Given the potential side effects of existing
policies for investment and operation, we suggest two elements
in a reoriented approach to the price formation problem: first
ensuring that prices exhibit full-strength volatility, and second
ensuring that risk-averse market participants have sufficient
ability to manage this volatility.

Index Terms—Electricity market design, price formation, risk
trading, virtual bidding

I. INTRODUCTION

THE analysis in Part 1 of this two-part paper highlights
that lost opportunity costs for market participants can

arise from both uncertainty and non-convexity. Attempts to
address non-convexity focus on the property of individual
rationality: faced with negative profits, resources would alter
their offers or choose not to participate in the market, leading
to lower overall efficiency. Losses due to uncertainty, on the
other hand, are an inherent feature of competitive markets, and
there is no efficiency-based argument to making participants
whole when they occur. Accordingly, addressing lost oppor-
tunity costs in an efficient way requires a clear distinction
between the two sources. Moreover, since prices formed in
spot markets serve as the basis for trades used to manage
financial risk in forward markets, efforts to address non-
convexity will necessarily affect efforts to address uncertainty.

Part 2 complements the theoretical development in Part 1,
using a toy model and then a large-scale test to demonstrate the
features of different pricing policies relative to the idealized
benchmark of ex ante convex hull pricing. The numerical
studies suggest that policies currently in use suppress volatility
relative to the ideal, leading to poor incentives for investment
and operation. A potential counterargument to restoring full-
strength price volatility and a higher probability of incurring
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losses is that it could prompt risk-averse market participants
to alter their offers, leading to lower efficiency overall. Along
these lines, Part 2 also assesses the role of financial trading,
including day-ahead markets, in reducing risk and aligning the
incentives of participants in short-term markets.

In addition to helping manage financial risk, trading in the
day-ahead market can improve the physical performance of
power systems by pushing the solution of the deterministic
market clearing model toward that of the true underlying
stochastic problem [1]–[4]. In practice, many complications
can interfere with this salubrious property [5]. In an extreme
example, the root cause analysis of the August 2020 outages
in California argues that virtual bidding contributed to the
need for rolling blackouts [6]. This paper highlights that the
effect of forward contracts on physical system performance
depends on the efficiency of the spot prices on which they
are based. In this context, while suppressing volatility of spot
prices relative to the ideal may have risk reduction benefits, a
better approach for losses due to uncertainty may be ensuring
that market participants have greater ability to trade risk [7],
[8]. To manage increasing variability and uncertainty due
to the growth of wind and solar, some have suggested the
introduction of intraday markets [9]–[12]. Our results suggest
that intraday markets could help reduce the perceived need for
uplift payments to address misaligned incentives. However,
along the lines of [13], fixed-quantity swaps alone do not
give an efficient way to manage risk associated with the
positive correlation between price and dispatch quantity for
most near-marginal generators. To address this correlation,
supplementing day-ahead markets with option-like instruments
may be more effective than introducing more frequent intraday
markets.

II. TOY EXAMPLE

To elaborate on the incentives of market participants, the
potential failure of pricing policies that neglect uncertainty,
and the role of forward markets, here we adapt an example
from [14] and construct a system with a single uncertain
demand, single hour-long time period, and single node. The
set of scenarios S = {1, 2, . . . , 100} contains 100 possible
outcomes for demand b, with bs = (99.5 + s) MW ∀s ∈ S.
The system is served by 101 thermal generators. Generator 0
has capacity 100 MW, has a marginal production cost of
$50/MWh, and has no minimum operating level, start-up cost,
or no-load cost. Generators n = 1, 2, . . . , 100 are each block
loaded units of size 1 MW with zero energy cost and a start-
up cost of n+50, such that Generator 1 costs $51 to commit
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and operate for the hour while Generator 100 costs $150. All
generators with even indices are slow-start generators, while
those with odd indices have fast-start capability. Lastly, the
system can also engage a demand-side resource at a cost of
$500/MWh in the event that the committed generators are
insufficient to meet demand. In stochastic programming terms,
the presence of this resource guarantees complete recourse.

At the time of first stage decisions, the probability ρs = 0.01
for each scenario s ∈ S. The scenarios are partitioned into
20 sets of cardinality 5; i.e., with R = {1, . . . , 20}, Sr =
{5(r − 1) + 1, 5(r − 1) + 2, . . . , 5(r − 1) + 5} ∀r ∈ R. The
conditional probability of scenario s ∈ S is 0.20 if s ∈ Sr

and zero otherwise.

A. Optimal solution

If the demand scenario s were known in advance, it can be
seen that the optimal solution would be to commit exactly
s of the block-loaded units. For instance, s = 40 would
give a total demand of 139.5, optimally served by 99.5 MW
from generator 0 and 40 MW from generators 1 through 40.
Instead, the stochastic problem requires the system operator
to weigh the commitment cost of the block-loaded generators
against the probability that a more expensive recourse action
will be required in the next epoch. Table I shows the optimal
commitment solution for the example system, i.e., the solution
to model (1) from Part 1, which depends on the subset of
demand scenarios Sr identified before the commitment of
fast-start units. The system commits 38 slow-start units in
stage one. In the event of low demand, i.e, r ∈ {1, . . . , 7},
no fast-start units are committed. For r ∈ {8, . . . , 12}, the
operator commits enough fast-start units to cover demand in
all scenarios that remain possible. For r ∈ {13, . . . , 17}, it
is optimal to engage the $500/MWh demand-side resource
20 percent of the time rather than commit an additional
fast-start unit. Lastly, in the highest demand scenarios with
r ∈ {18, 19, 20}, the system commits all available fast-start
units but the demand-side resource is frequently needed since
many slow-start units have been held offline.

B. Pricing

We now consider how to establish a pricing policy that
supports this optimal solution. Building on the discussion in
Part 1, we make several aspects of this challenge more concrete
here. For reference, we summarize the five pricing schemes
defined in Part 1 as follows:

• Locational Marginal Pricing (LMP): Binary commit-
ment variables are fixed to their optimal values, with only
marginal costs able to contribute to energy prices.

• Ex Post Convex Hull Pricing (EP-CHP): Generator
feasible regions are relaxed to their convex hulls and a de-
terministic solution for relaxed commitment and dispatch
is found using the realizations of random variables.

• Fast-Start Pricing I (FSP-I): The feasible regions of
fast-start generators committed by the ISO are relaxed
to their convex hulls while other binary variables are
fixed to their optimal values, and a deterministic solution

TABLE I
OPTIMAL COMMITMENT SOLUTION FOR EXAMPLE SYSTEM FOR EACH

DEMAND RANGE

Range Max Block-loaded Units Probability of
Demand Committed Shortfall

1 104.5 38 0.0
2 109.5 38 0.0
3 114.5 38 0.0
4 119.5 38 0.0
5 124.5 38 0.0
6 129.5 38 0.0
7 134.5 38 0.0
8 139.5 40 0.0
9 144.5 45 0.0

10 149.5 50 0.0
11 154.5 55 0.0
12 159.5 60 0.0
13 164.5 64 0.2
14 169.5 69 0.2
15 174.5 74 0.2
16 179.5 79 0.2
17 184.5 84 0.2
18 189.5 88 0.4
19 194.5 88 1.0
20 199.5 88 1.0

for relaxed commitment and dispatch is found using the
realizations of random variables.

• Fast-Start Pricing II (FSP-II): The feasible regions
of all fast-start generators are relaxed to their convex
hulls while other binary variables are fixed to their
optimal values, and a deterministic solution for relaxed
commitment and dispatch is found using the realizations
of random variables.

• Ex Ante Convex Hull Pricing (EA-CHP): Generator
feasible regions are relaxed to their convex hulls per
scenario and a stochastic solution for relaxed commitment
and dispatch is found before learning the realizations of
random variables.

Table II shows the average price across all 100 scenarios under
the five pricing schemes. The system is constructed such that

TABLE II
EXPECTED SPOT PRICE UNDER DIFFERENT PRICING SCHEMES

($/MWH)

LMP EP-CHP FSP-I FSP-II EA-CHP
126.50 100.50 147.85 129.00 127.90

the marginal unit in every scenario is either generator 0, with
a marginal cost of $50/MWh, or the demand-side resource,
with a marginal cost of $500/MWh. Examination of Table I
shows that the demand-side resource is engaged in 17 of the
100 scenarios (one scenario each when r ∈ {13, . . . , 17},
two scenarios when r = 18, and five scenarios each when
r ∈ {19, 20}). Under the traditional LMP pricing policy, this
means that the price set after the dispatch is determined will
be $500/MWh in 17 percent of scenarios and $50/MWh in the
remaining 83 percent, for an average of $126.50/MWh.

The price under EP-CHP is substantially lower. Suppose
we knew in advance that s = 40 and were able to optimally
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commit 40 block-loaded units. In this instance, generator 0
would still be the price-setting resource under traditional
LMP, leading to a price of $50/MWh and losses for genera-
tors 1 through 40. The EP-CHP scheme attempts to minimize
conflicts between the system operator and individual market
participants by instead setting a price of $90/MWh, i.e., the
total cost of the most expensive unit that would have been
committed had demand been known in advance. Given this
price, generators 0 through 40 would be content with their non-
negative profit, while generators 41 through 100 would still
prefer not to operate. Applying this logic across all scenarios,
an EP-CHP policy would lead to generator s setting the price
in each scenario s ∈ S, giving an average price of $100.50.

1) Forward Contracting and Ex Post Lost Opportunity
Costs: In the optimal solution, 38 slow-start units are com-
mitted in the first stage, the most expensive of which is gener-
ator 76 at a total cost of $126. With the LMP pricing policy,
generator 76 incurs a loss of $76 in the 83 scenarios with a
price of $50/MWh. In the other 17 scenarios, the uncommitted
slow-start generator 78 does not operate even though it could
hypothetically earn a profit of $500 − $128 = $372. In
both cases, owners of the generator may complain that the
commitment and dispatch schedule directed by the system
operator led to lower profits than would have been obtained
under a different schedule.

As described in Part 1 of the paper, suppose we identify the
first stage of the model as a day-ahead market that includes
virtual bidders driving the day-ahead price to the expected real-
time price. Under LMP, this expected price is $126.50/MWh,
while EP-CHP gives $100.50/MWh. Under LMP or EA-CHP,
forward contracts awarded in the day-ahead market alleviate
the lost opportunity costs problem noted above: generator 76
locks in a profit of $0.50, allowing it to avoid losses in
scenarios with a price of $50/MWh.

2) Backpropagation and Operational Efficiency: Given the
no-arbitrage condition leading to day-ahead prices that match
expected real-time prices, it is worth highlighting the interac-
tion between the chosen policy for real-time price formation
and the operational efficiency of the system. With an expected
price under EP-CHP of $100.50/MWh, generator 76 would
not clear in the day-ahead market despite being included
in the optimal solution to the stochastic unit commitment.
Instead, it would be supplanted by virtual suppliers bidding
closer to $100.50. As a result, implementation of EP-CHP
would require that system operators supplement or override
the results of the day-ahead market, e.g., through a residual
unit commitment process, in order to restore a near-optimal
solution. Without a day-ahead market position, generator 76
would be fully exposed to real-time prices and would expect to
incur an operating loss of $25.50. The FSP-I scheme exhibits
the opposite issue. With an expected price of $147.85/MWh,
many slow-start units would be awarded a contract in the day-
ahead market despite not being in the efficient solution to the
stochastic unit commitment problem.

For purposes of the analysis in this paper, we set aside the
consequences of pricing policies for reliability and operational
efficiency, instead focusing on the financial outcomes. In other
words, we assume that operators have the ability to restore

an efficient commitment and dispatch solution. However, we
highlight the need for further analysis on the operational
ramifications of different pricing policies, since 1) operator
interventions to override market outcomes, which introduce the
need for other penalties or uplift payments, are typically seen
as undesirable and 2) such interventions are inherently limited
in their scope to the resources under centralized control,
leading to challenges if some resources are self-scheduled.

3) Ex Ante Lost Opportunity Costs: The discussion so far
suggests that attempts to address incentive issues through
EP-CHP may in fact be counterproductive: for generator 76,
instituting EP-CHP results in poor incentives at the time a
commitment decision must be made. In effect, the pricing
policy misdiagnoses losses arising due to uncertainty as in-
stead resulting from non-convexity. This observation, however,
does not imply that retaining LMP removes the potential for
misaligned incentives.

Table III shows the cost of the most expensive fast-start unit
committed for each r ∈ R, as well as the conditional mean
of the price under each pricing policy. Consider the case of
r = 10, in which 12 fast-start units are committed. Since the
demand-side resource is never engaged, under LMP the price
will be $50/MWh. Since the 12 fast-start units all have a start-
up cost above $50, they are guaranteed to lose money despite
being included in the optimal commitment. In other words,
the fast-start generators would prefer not to be committed in
the second stage given the conditional distribution of prices
in the third stage. Under EA-CHP, the conditional mean is
determined by the most expensive committed fast-start unit,
which has a total cost of $73.

4) Uplift and Incomplete Markets: The presence of a day-
ahead market substantially changes the lost opportunity costs
calculation for slow-start units. In U.S. markets, however, mar-
ket operators do not provide an opportunity to update financial
positions between the day-ahead and real-time markets. This
limitation can be contrasted with European markets, where
continuous trading is available until closer to real time [9]. In
the second stage of the example problem, consider the case of
r = 16, which leads to the commitment of 41 fast-start units
and a 20 percent chance of engaging the demand-side resource.
In this case, the most expensive fast-start unit is generator 81,
with a cost of $131. The conditional mean of the price under
LMP is $140/MWh, i.e., high enough to make commitment of
the generator profitable in expectation. Without a mechanism
to lock in the new expected price of $140/MWh, however,
generator 81 will incur losses 80 percent of the time.

To alleviate problems with potentially misaligned incen-
tives, market operators in the U.S. use uplift payments to
supplement compensation from the uniform prices seen by
all market participants. These side payments can be seen as
part of the overall pricing policy. While the theoretical results
in Part 1 pertain to all lost opportunity costs, no system
actually pays all lost opportunity costs as uplift because such a
policy would lead to indefensibly high compensation in prac-
tice [15]. Instead, most systems authorize smaller categories of
uplift payments. The most important of these are make-whole
payments, which guarantee non-negative profit for generators
that are included in the efficient commitment solution, and
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TABLE III
TOTAL COST OF MOST EXPENSIVE COMMITTED FAST-START UNIT COMPARED TO CONDITIONAL MEAN OF PRICE IN EACH DEMAND RANGE

Range Highest FS Cost LMP EP-CHP FSP-I FSP-II EA-CHP
(r) ($) ($/MWh) ($/MWh) ($/MWh) ($/MWh) ($/MWh)
1 0 50.00 53.00 50.00 50.00 50.00
2 0 50.00 58.00 50.00 50.00 50.00
3 0 50.00 63.00 50.00 50.00 50.00
4 0 50.00 68.00 50.00 50.00 50.00
5 0 50.00 73.00 50.00 50.00 50.00
6 0 50.00 78.00 50.00 50.00 50.00
7 0 50.00 83.00 50.00 50.00 50.00
8 53 50.00 88.00 50.80 50.80 53.00
9 63 50.00 93.00 59.00 59.00 63.00

10 73 50.00 98.00 69.00 69.00 73.00
11 83 50.00 103.00 79.00 79.00 83.00
12 93 50.00 108.00 89.00 89.00 93.00
13 101 140.00 113.00 178.40 99.00 103.00
14 111 140.00 118.00 186.40 109.00 113.00
15 121 140.00 123.00 194.40 119.00 123.00
16 131 140.00 128.00 202.40 129.00 133.00
17 141 140.00 133.00 210.40 139.00 141.00
18 149 230.00 138.00 288.20 288.20 230.00
19 149 500.00 143.00 500.00 500.00 500.00
20 149 500.00 148.00 500.00 500.00 500.00

we focus on these potential make-whole payments in the
discussion in Part 2.

In the case of r = 16 discussed above, under current rules
generator 81 could be entitled to a make-whole payment of
$81 to cover its losses in the 4 out of 5 scenarios that result
in an LMP of $50/MWh. While the justification for these side
payments relies on the need to satisfy individual rationality
constraints, the example highlights the potential issue with
assessing profitability ex post. Given r = 16, at the time of
commitment generator 81 is profitable in expectation, earning
$9 on average. In this case, providing make-whole payments
whenever the price is $50/MWh socializes the losses that
occur 80 percent of the time and privatizes the gains that
occur when the price is $500/MWh. A more efficient route to
resolving the incentive issues associated with these potential
losses could be to attach a financial position to commitments
occurring in the second stage, moving toward more complete
markets in risk. A forward market executed at the time of the
second stage would allow generators to update their financial
positions based on the conditionally expected price. In the case
of r = 16, generator 81 could sell its power in this intraday
market at a price of $140/MWh, enabling it to avoid losses in
the scenarios with a real-time price below $131/MWh.

C. Scenario Profits

With prices and quantities in forward markets defined,
we can calculate the profit earned by generators in each
scenario under each pricing policy and trading regime. With
the superscript 1 indicating a single settlement, i.e., no forward
trades, profit for generator n under policy PS is entirely
dependent on the spot price in the given scenario and the
production according to the efficient schedule:

π1
ns = (λPS

s )⊤x∗
ns −

(
c⊤x∗

ns + d⊤y∗ns
)
.

With superscript 2 indicating a two-settlement system with
a day-ahead market in addition to the spot market, profit is
calculated as

π2
ns = (λ

PS
)⊤xDAM

ns + (λPS
s )⊤(x∗

ns − xDAM
n )

−
(
c⊤x∗

ns + d⊤y∗ns
)
.

With the two-settlement system, sales in the real-time market
are calculated with reference to the forward position awarded
in the day-ahead market. With superscript 3 indicating an
additional settlement in an intraday market, profit is calculated
as

π3
ns = (λ

PS
)⊤xDAM

ns + (λ
PS

r )⊤(xIDM
ns − xDAM

n )

+(λPS
s )⊤(x∗

ns − xIDM
n )−

(
c⊤x∗

ns + d⊤y∗ns
)
.

The expected prices in Table II are an indication of the superior
ex ante incentives offered by EA-CHP, and to a lesser extent
LMP and FSP-II, in the example system. Here we turn the
focus to ex post results, in particular the potential for losses in
individual scenarios. Table IV shows the number of generator
scenarios which result in a negative profit under each pricing
policy and trading regime. Given 100 scenarios and 101
generators, the total count of generator scenarios is 10,100.
With a price of $50/MWh frequently set by generator 0, LMP

TABLE IV
GENERATOR SCENARIOS WITH NEGATIVE PROFIT

Settlements LMP EP-CHP FSP-I FSP-II EA-CHP
One 4,324 1,523 2,250 2,271 4,106
Two 35 953 247 35 159
Three 50 984 250 29 0

and EA-CHP lead to frequent occurrence of negative profit
scenarios. However, the introduction of a day-ahead market
substantially reduces this number, and in the case of EA-
CHP the addition of an intraday market brings the number
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of negative profit generator scenarios to zero. Forward trading
brings limited benefit in the case of EP-CHP, because the
underlying prices are too low to result in a profit for many
committed generators.

Table V shows the make-whole payments that would be
authorized on average if generators were guaranteed non-
negative profit in each scenario. Table V exhibits the degree

TABLE V
AVERAGE MAKE-WHOLE PAYMENTS TO ALL GENERATORS, WITH

LOSSES COMPUTED BY SCENARIO INCLUSIVE OF FINANCIAL TRADES

Settlements LMP EP-CHP FSP-I FSP-II EA-CHP
One $1,623 $377 $754 $756 $1,545
Two $146 $272 $828 $46 $164
Three $172 $272 $843 $46 $0

to which make-whole payments may be driven more by the
variance of prices created by a pricing policy, rather than
the expected value. Despite having a lower expected price
than other policies, EP-CHP generates fewer make-whole pay-
ments in the single settlement regime by lifting prices above
$50/MWh in low-demand scenarios, reducing its variance.
With two settlements, both LMP and FSP-II lead to lower
make-whole payments on average than EA-CHP. We return
to the topic of price volatility, corresponding incentives for
flexibility, and its relationship to market completeness in the
larger test system.

III. LARGE-SCALE TEST SYSTEM

A. Case Study

To demonstrate the difference between pricing policies
on a more realistic example, we selected a known-to-be-
challenging day (2013-05-11) from [16], which considers 100
hypothetical wind scenarios drawn from real-world data from
the Bonneville Power Administration over the WECC-240
system. To stress the system further, load was increased 10%
from its given value, resulting in a mean wind penetration
rate of 26% for this day over 100 wind scenarios, with a
maximum hourly variability (at hour 20) of 79% of load,
and a maximum net-load at hour 15 in scenario 38. Load
is modeled deterministically, and wind is considered a zero
marginal cost resource which is fully curtailable. Finally, to
create a slightly less flexible system, we down-selected from
50 fast-start resources to 27 fast-start resources out of a total
of 85 thermal units.

As is common in power systems operations, it may be
difficult to distinguish between different policies on “typical”
days. In our selected case study, FSP-I and FSP-II resulted in
identical prices across all scenarios and time periods. It should
be noted that these identical prices were obtained from the
optimal solution of a modestly sized test system. Suboptimal
commitments are common in real-world systems, in which
case the FSP-II policy’s results would be relatively stable
while those of FSP-I could change substantially [17]. In this
section, we merge the results into a single policy labeled FSP.
Further convergence in policies can occur. In tests that used the
original set of 50 fast-start resources instead of our selected 27,
for example, FSP yielded the same prices as EP-CHP. Here we

present an instance with some separation so as to distinguish
between the different pricing policies.

B. Computational Setup

All computations were done on a MacBook Pro (16-inch,
2019) with an 8-core 2.4GHz Intel Core i9 processor with 64
GB of DDR4 memory. All optimization problems were solved
using Gurobi 9.0.2 [18]. Stochastic unit commitment problems
were formulated using EGRET [19], [20] and mpi-sppy [21],
[22]. All stochastic unit commitment problems were solved
using the “extensive form” with 0% optimality gap to ensure
an optimal commitment schedule is obtained (within numerical
tolerances). Suboptimal commitments are a practical reality
in large markets and can have a large effect on pricing
results [17]. Accordingly, the LMP and FSP-I results could
change substantially if the first or second stage commitments
are not optimal, whereas results would be relatively stable due
to suboptimality in either stage for EA-CHP or the second
stage for FSP-II. Pricing problems were solved using the
“extensive form” for EA-CHP, FSP, and LMP. To ensure
convex hull prices (or variants thereof) were obtained, the
row-generation procedure introduced in [23] was adapted to
iteratively refine the convex hull relaxations of individual gen-
erators within stochastic pricing problems. The deterministic-
equivalent formulation of the problem, i.e., the load-balance
and generator constraints, was also taken from [23].

The 100-scenario stochastic unit commitment used in this
case study, with 85 thermal generators and a power-balance
constraint over 24 time periods, was readily solvable by
Gurobi within reasonable wall-clock times of less than 1 hour.
With a larger test system or a transmission network further
decomposition schemes would need to be considered; however,
approaches such as lazy-constraint generation for transmission
constraints and scenario decomposition techniques such as
progressive hedging [24] are readily applicable to the pricing
problems demonstrated here.

C. Average Prices

Figure 1 shows the average price in each hour under the
four pricing schemes. In the low-demand hours of the early
morning and late evening, all the pricing schemes result in
similar prices, with EP-CHP tracking slightly above the other
three. Relative to LMP and FSP, EP-CHP results in slightly
elevated prices on average through the middle of the day. EA-
CHP also result in higher prices than LMP overall, but price
spikes are concentrated in hours 14 and 15. Because the set
of fast-start resources is relatively small, LMP and FSP return
similar results. In other instances with a larger number of fast-
start resources, FSP could instead mirror EP-CHP.

Figure 2 shows the distribution of load-weighted average
prices arising in the 100 scenarios, corresponding to the total
revenue earned by generators over the course of the day. It
can be seen that, while average compensation is similar under
the four pricing schemes, EA-CHP leads to a wider spread
between scenarios.
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Fig. 1. Average Price by Hour

Fig. 2. Distribution of Weighted Average Prices

D. Scenario Prices and Incentives for Flexibility

The spread of daily compensation observed in Figure 2
suggests that under EA-CHP, generators may have more po-
tential to monetize flexible attributes (e.g., being able to defer
a commitment decision until closer to real time). Differing
incentives for flexibility also arise in real-time operations.
Figure 3 shows the paths that prices take in each scenario
under each pricing scheme. As reflected by the averages in
Figure 1, it can be seen that EA-CHP leads to more significant
price spikes in the afternoon of some scenarios, corresponding
to the hours and scenarios that drive the need for commitment
of the highest-priced generators.

Since price volatility is an important signal for flexibility in
operations, these pricing patterns suggest that EA-CHP may
provide stronger incentives for long-run investment than LMP,
EP-CHP, and FSP [25]. As a metric for price volatility, we
compute the value

1

100

∑
s∈S

∑
t∈2...24

|λPS
st − λPS

s(t−1)|,

where λPS
st indicates the price in scenario s and hour t under

pricing scheme PS. Table VI reports the value of this price
volatility metric under each pricing scheme.

TABLE VI
AVERAGE OF ABSOLUTE HOURLY PRICE DIFFERENCES

LMP EP-CHP FSP EA-CHP
($/MWh) ($/MWh) ($/MWh) ($/MWh)

44.68 49.34 46.07 65.38

E. Scenario Profits and Forward Markets

The distribution of profits faced by generators at the time
of commitment informs their willingness to follow a socially
optimal schedule. The results in this subsection consider the
ability of the pricing policies to support the socially optimal
schedule, as well as the effect of risk trading in ensuring
that incentives are aligned. Table VII shows the number of
generators with negative expected profit under each pricing
scheme before accounting for any side payments. We note
that these values would be zero in a convex setting. Consistent
with the theoretical development in Part 1, EA-CHP exhibits
superior performance on this metric, with expected losses
limited to a single generator incurring a loss amounting to
0.0002% of total expected operating cost. Because the EA-
CHP prices are approximated, the near-zero expected losses
provide considerable confidence that the approximation is very
close for our test problems (see Remark II.2 in Part 1).

TABLE VII
NUMBER OF GENERATORS (OUT OF 85) WITH NEGATIVE EXPECTED
PROFIT AND TOTAL NEGATIVE EXPECTED PROFIT AS A PERCENTAGE

OF EXPECTED OPERATING COST.

LMP EP-CHP FSP EA-CHP
Number 6 2 4 1of generators
Relative 0.1877% 0.0433% 0.1517% 0.0002%expected losses

Suppose the market satisfies the assumptions of complete
risk trading [7], [8], with the added assumption of at least
one risk-neutral market participant. In this setting, the risk-
adjusted probability attached by each market participant to
each scenario s ∈ S would be 1%, and an Arrow–Debreu
security for each scenario would be priced at $0.01, returning
$1.00 in scenario s and $0.00 otherwise [26]. Accordingly,
by selling securities for each scenario in a quantity equal
to its profit in that scenario, a generator could lock in its
expected profit. Given this ability to trade, the expected losses
in Table VII correspond to the make-whole payments that
would be required under each scheme. As such, the need
for make-whole payments would almost be eliminated under
EA-CHP, while the other policies leave greater need for side
payments.

Now suppose that markets in risk are incomplete. In this
case, market participants may not use the same probability
measure, due either to differing underlying assessments or
to risk aversion. The current two-settlement system used in
U.S. electricity markets, for example, does not meet the
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Fig. 3. Hourly Price in Each Scenario under Each Pricing Policy

idealized conditions of complete markets. In the example of
Section II, introduction of day-ahead and intraday markets
was enough to eliminate scenarios with losses under EA-
CHP (Table IV). The forward markets defined in Part 1,
however, are not sufficient to complete the market in the
larger scale test system. Table VIII shows the expected make
whole payments as a percentage of operating costs under
each pricing scheme when trading is limited to these two
contracts. In contrast to the results in Section II, we see even

TABLE VIII
TOTAL EXPECTED MAKE WHOLE PAYMENTS AS A PERCENTAGE OF

EXPECTED OPERATING COST.

Settlements LMP EP-CHP FSP EA-CHP
One 0.4658% 0.1560% 0.4037% 0.4298%
Two 0.3943% 0.0842% 0.3645% 0.1708%
Three 0.3141% 0.0757% 0.2989% 0.1157%

that three settlements is not enough to drive the expected
make-whole payments to the idealized values presented in
Table VII. The inability of EA-CHP to outperform EP-CHP
under conditions of incomplete trading is an indication of the
underlying price volatility combined with incomplete forward

markets. In Section II, because all generators except for the
always-profitable generator 0 were block loaded, the quantity
sold by committed generators was decoupled from the price. In
the large-scale example, generators produce more when prices
are higher, leading to a risk that cannot be hedged through
fixed-volume swaps alone. The larger variability in prices in
EA-CHP demonstrated in Figure 1 and quantified in Table VI
means that market participants are unable to hedge completely
in the modeled forward markets, driving relatively larger losses
in a few scenarios. Comparatively, under EP-CHP such market
participants experience smaller losses in several scenarios (but
also smaller gains), driving expected make-whole payments
lower.

The results in Tables VI and VIII suggest an important
trade-off in the choice of a price formation policy. With
greater price volatility, market participants may be exposed
to a higher chance of losses. This potential for losses could in
turn affect the offer behavior of risk-averse market participants,
degrading efficiency in operations [7]. At the same time,
price volatility is an important incentive to invest in resources
that are flexible enough to take advantage of that volatility.
Accordingly, suppressed volatility relative to the ideal could
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degrade efficiency on longer timescales [25]. Resolving this
trade-off would entail both producing efficient underlying spot
prices and ensuring the availability of a broader range of
hedging instruments with low transaction costs.

IV. CONCLUSION

This article investigates the combined effect of uncertainty
and non-convexity when evaluating policies for price forma-
tion in wholesale electricity markets. Our results emphasize the
importance of correctly diagnosing the source of misaligned
incentives for market participants. Policies developed on the
basis of deterministic models or ex post analysis may be
counterproductive, leading to poor incentives at the time
generator commitment decisions must be made. In particular,
uplift payments that appear “necessary” in a deterministic
analysis may be revealed as inefficient subsidies in a stochastic
analysis, while enhanced pricing schemes that neglect the
effect of uncertainty may have the negative consequence of
suppressing volatility in prices and hampering efforts to attract
an efficient level of investment in flexible resources.

To help elucidate the economic phenomena the paper defines
a new construct, ex ante convex hull pricing, that minimizes
expected lost opportunity costs for market participants. Gen-
erators are nevertheless exposed to the possibility of realizing
losses due to underlying non-convexity as well as the uncer-
tainty inherent in electricity systems. Results from the case
study indicate that intraday markets may help reduce the po-
tential for losses, but more complete risk management would
require introduction of option-like instruments enabling market
participants to manage the positive correlation between price
and quantity. In current markets, uplift payments and enhanced
pricing schemes may have the effect of partially managing
risk on behalf of participants. In doing so, however, they
may introduce distortions and subsidies that reduce overall
efficiency.

Despite its appealing theoretical properties, EA-CHP faces
an important epistemic challenge to implementation in prac-
tice. While ex ante prices in the paper are determined through
a stochastic program that includes all possible future states
of the world, a real-world system would encounter scenarios
in real-time that were not included in the model. With this
complication, it is not clear how to produce EA-CHP prices
in real time. Just as an inability to produce exact EP-CHP
prices has not prevented market operators from implementing
approximations, however, our results suggest that market de-
signers should seek workable policies able to approximate the
properties of EA-CHP. Conceptually simple approximations
will be the most compelling candidates for use in practical
settings, possibly being formulated as an ex post pricing policy
with similar form as currently implemented fast-start pricing
models. In addition to variants of schemes proposed in the
deterministic context, an alternate route to forming prices that
provide similar incentives to EA-CHP may be through the
design of operating reserve demand curves [14]. Further tests
on multiperiod stochastic models are needed to assess the
empirical performance of competing proposals.
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