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Abstract—Operators of organized wholesale electricity markets
attempt to form prices in such a way that the private incentives
of market participants are consistent with a socially optimal
commitment and dispatch schedule. In the U.S. context, several
competing price formation schemes have been proposed to
address the non-convex production cost functions characteristic
of most generation technologies. This paper considers how
the design and analysis of price formation policies for non-
convex markets are affected by the uncertainty inherent in
electricity demand and supply. We argue that by excluding
uncertainty, the analytical framework underlying existing policies
mischaracterizes the incentives of market participants, leading to
inefficient price formation and poor incentives for flexibility. We
establish favorable theoretical properties of a new construct, ex
ante convex hull pricing, and demonstrate the difference between
this idealized benchmark and existing methods on a large-scale
test system. Given increased operational uncertainty with a
transition to wind and solar generation, distortions caused by
poor incentives for flexibility are likely to grow without improved
price formation in organized wholesale markets.

Index Terms—Electricity market design, non-convexity, uncer-
tainty, price formation, uplift

The Commission’s price formation efforts seek to ensure that
market rules provide appropriate price signals, which

compensate resources at prices that reflect the value of the
service resources provide to the system and operational
conditions and ensure resources accurately respond to

dispatch instructions.

—Federal Energy Regulatory Commission statement on
Energy Price Formation

I. INTRODUCTION

IN recent years, many organized wholesale electricity
markets in the U.S. have implemented enhanced pricing

schemes intending to address the non-convex production cost
functions characteristic of most generation technologies. Since
it prevents the formation of uniform clearing prices, non-
convexity can lead to a difference between the profit market
participants would gain by maximizing their individual benefit
and that they obtain by following the socially optimal sched-
ule. The non-convex price formation problem has proven chal-
lenging, motivating a large number of competing proposals [1],
modeling advances to enable computation of prices under

B. Eldridge is with Pacific Northwest National Laboratory. email:
Brent.Eldridge@pnnl.gov. B. Knueven is with the National Renewable Energy
Laboratory. email: Bernard.Knueven@nrel.gov. J. Mays is with the School
of Civil and Environmental Engineering, Cornell University. email: jacob-
mays@cornell.edu.

Manuscript received.

these proposals [2], [3], and large-scale tests aimed at under-
standing the economic consequences of their adoption [4]–[8].
Efforts to address non-convexity have led to the introduction
of Extended LMP in the Midcontinent Independent System
Operator (MISO) [9] and Fast-Start Pricing in ISO New
England (ISO-NE) [10], the New York Independent System
Operator (NYISO) [11], PJM Interconnection (PJM) [12], and
the Southwest Power Pool (SPP) [13].

Part 1 of this two-part paper demonstrates that existing
policies fail, even in principle, to “ensure resources accurately
respond to dispatch instructions.” Part 2 provides evidence
that existing policies may not “compensate resources at prices
that reflect the value of the service resources provide to the
system,” in particular failing to provide adequate incentives
for flexibility in operations. As such, the paper’s primary
contribution is in diagnosing inadequacies in existing policies.
While the paper is diagnostic rather than constructive, our
corresponding goal is to propose a new direction for research
in this area by demonstrating a stochastic analysis of how price
formation policies are affected by the uncertainty inherent in
electricity demand and supply.

While difficult in its own right, the version of the non-
convex price formation problem generally addressed in the
literature understates the real-world challenge. Descending
from [14] and [15], the main focus in the literature is the
binary commitment variables included in deterministic day-
ahead market models covering at least 24 hours of operations.
Importantly, however, these seminal analyses occurred before
the widespread adoption of financial trading in day-ahead mar-
kets. With lower uncertainty in supply and participation limited
to physical resources, the day-ahead market could be analyzed
as a standalone entity. Modern day-ahead markets include
financial participants attempting to profit through arbitrage and
are therefore linked to real-time markets. As a consequence,
analyses of price formation policies that describe day-ahead
markets without specifying how the policy leads to different
outcomes in the real-time market are incomplete. Due to the
back-propagation of expected real-time prices to the day-ahead
market through financial participants, any effort to institute
a new policy for pricing in day-ahead markets without also
altering real-time price formation would be in vain [16], [17].
In U.S. markets, these real-time prices are calculated every
five minutes using a simpler economic dispatch model that
excludes binary variables, covers a much smaller time frame
than the day-ahead market, and updates as new information
is available throughout the day. In this setting, the challenge
is not to identify a complete set of prices that accurately
conveys the cost to serve load over a 24-hour operating period,

This article has been accepted for publication in IEEE Transactions on Energy Markets, Policy, and Regulation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEMPR.2023.3315956

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Cornell University Library. Downloaded on September 17,2023 at 08:07:05 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY AND REGULATION 2

but instead to identify a policy for setting spot prices in
each individual five-minute period such that the generated
sequence of prices preserves any relevant information about
non-convexity and intertemporal constraints contributing to
overall cost. Due to this complication, the relationship between
price formation proposals with favorable properties described
in the literature and those implemented in real-world markets
is unclear.

Moving toward a more complete version of the price
formation problem entails a consideration of uncertainty in
addition to non-convexity. Price formation often depends on
past decisions that were made without perfect information, so
accounting for uncertainty has important implications for the
interpretation of competing policies. Among uniform pricing
schemes, convex hull pricing was proposed as a “best com-
promise” between a convex market equilibrium and what is
obtainable in a market with non-convexities [15], [18], [19]. In
deterministic simplifications, it has the property of minimizing
lost opportunity costs, i.e., the difference between the profit
market participants could have gained by maximizing their
individual benefit and what they obtain by following a socially
optimal schedule. Informally, these prices are often described
as “ideal” because they are thought to align the incentives
of market participants and the system operator to the extent
possible given underlying non-convexity [20]. This description
of aligned incentives, however, is an artifact of a deterministic
model in which generators respond to a known market price.
As shown in [21], convex hull pricing as traditionally defined
can give poor incentives in the presence of uncertainty. In
addition to non-convex production costs, thermal generators
have intertemporal constraints linking decisions in present
intervals with the future. An appropriate characterization of
generator incentives therefore requires consideration of com-
mitment decisions that are made under uncertainty of real-
time conditions. The common definition of lost opportunity
costs overestimates the incentives for inflexible generators to
deviate from the system operator’s commitment and dispatch
instructions because it assumes that these past commitment
decisions could have been made with perfect knowledge of
real-time prices.

Just as the traditional ex post convex hull pricing may be
considered ideal for generating prices in a day-ahead market
without uncertainty, this paper defines a new pricing construct,
ex ante convex hull pricing that may be considered ideal for
generating spot prices. While this newly defined policy offers
a clear exposition of the inadequacy of current approaches, it
is not well-suited to real-world implementation. Accordingly,
the paper’s goal is to redefine the non-convex price formation
problem rather than resolve it. In Part 2, we complement the
theoretical results with a computational demonstration on an
ISO-scale system with a large scenario set leveraging state-of-
the-art stochastic programming methods to compare market
outcomes of different schemes, including the traditional ex
post locational marginal pricing (LMP), the ex post convex
hull pricing (EP-CHP) sometimes described as an ideal in
the literature, two variants of the fast-start pricing (FSP)
implemented in several real-world markets, and the ex ante
convex hull pricing (EA-CHP) defined here. We discuss the

results in the context of ongoing debates about price formation
in U.S. markets.

Two outcomes of the numerical tests are particularly rel-
evant to these policy debates. First, with the growth of
wind and solar, many systems have become concerned with
ensuring sufficient flexible resources to manage variability and
uncertainty. Consistent with [22], our tests suggest that current
pricing policies could suppress volatility in prices and lead to
weaker incentives for investment in flexible resources. It is
well understood that suppressing the level of prices leads to
a missing money problem and necessitates the introduction of
supplemental revenue streams to achieve an efficient level of
capacity [23]. Similarly, a failure to allow full-strength price
volatility would imply a need for supplemental revenues to
achieve an efficient level of flexibility in the resource mix.
Second, currently accepted definitions of uplift include losses
due to uncertainty as well as non-convexity. By misdiagnosing
losses from uncertainty as instead arising due to non-convexity,
uplift payments often described as “necessary” to providing
good incentives can instead inappropriately subsidize inflexi-
bility [21]. The resulting transfers from customers to genera-
tors are substantial. In PJM, for example, total energy uplift
amounted to $178.3M in 2021, of which two categories, bal-
ancing generator and lost opportunity cost credits, constituted
$157.8M [24]. Our analysis shows that the non-convexity-
based justification typically provided for these categories of
uplift is inadequate, and points to the type of uncertainty-based
evidence that would constitute appropriate justification. Absent
evidence along these lines, it may be questioned whether these
transfers meet the regulatory standard of just, reasonable, and
not unduly discriminatory.

We describe the price formation problem, define ex ante
convex hull pricing in a general way, and describe its theoret-
ical properties in Part 1 of this two-part paper. Part 2 develops
a small example system to motivate the discussion, illustrate
the key economic phenomena, and demonstrate the potential
failure modes of seemingly plausible price formation policies
that neglect the effect of uncertainty, then builds a large-scale
example to provide a more complete demonstration of the
properties of competing pricing schemes.

II. MODELS FOR COMMITMENT, DISPATCH, AND PRICING

Operators of organized wholesale markets seek to identify
commitment and dispatch schedules that maximize market
surplus, as well as prices that support those optimal operational
schedules. Our first task is therefore to identify a surplus-
maximizing solution to the operational problem, for which
we define a stochastic program. It bears mentioning that the
stochastic program we define is a simplification of the true op-
erational problem, which would be better characterized in the
framework of sequential decision making under uncertainty.
Given our focus on pricing rather than operations, our strategy
is to describe a problem that is complex enough to reveal the
economic properties of competing pricing policies, but not so
complex as to obscure the economic analysis.

We then turn in the following two subsections to the
question of what real-time price formation policy would best
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support that optimal commitment and dispatch. Focusing on
the joint impact of uncertainty and non-convexity, we define
a set of pricing models associated with the commitment and
dispatch decisions. Here our representation of the system as
a stochastic program becomes important, as it determines
market schedules in each possible real-time scenario. Three
ex post pricing models are defined that consider each real-
time scenario independently. An ex ante pricing model is then
defined that considers linkages between real-time scenarios
that arise due to uncertainty and intertemporal constraints.
We consider real-time scenarios from a discrete probability
distribution that accurately represents all possible states of the
world and the market operator and participants’ beliefs. As
will become clear, this assumption poses a serious challenge
for implementation of the idealized ex ante convex hull pric-
ing. In pursuit of practical implementations, future in-depth
studies of competing approaches would benefit from more
realistic simulations of rolling horizon decision models, the
dynamic revelation of uncertainties, agents with asymmetric
information and risk preferences, and decentralized methods
to coordinate market-based pricing and scheduling decisions.

The section closes with a definition of forward market
models that ensure consistency with the different real-time
prices generated under each policy. We do not assume that the
market operator explicitly employs stochastic programming for
either operations or market clearing (cf. [25]–[28]). What is
important for the purposes of our analysis is not the means by
which a commitment and dispatch is identified, but the ability
to describe a complete solution for all scenarios.

A. Stochastic Unit Commitment

The stochastic unit commitment problem (SUC) below
minimizes the total production cost zSUC considering dispatch
decisions xns ∈ R and commitment yns ∈ Z for a set of
generators n ∈ N and scenarios s ∈ S. Here we consider a
slight modification of the classic two-stage setup [29], [30],
adding an additional intermediate stage to capture fast-start
commitments, for a total of three stages. The generators are
split into a subset of fast-start generators F ⊂ N and slow-
start generators F̂ = N \ F . In the first stage, commitment
decisions for all slow-start generators must be determined.
Between the first and second stages, we gain knowledge about
the uncertainties, allowing us to narrow the possible scenarios
to a subset Sr ⊂ S, with r ∈ R indexing the subsets
in the partition. In the second stage, commitment decisions
for all fast-start generators are made. Lastly, in the third
stage, uncertainties are revealed and dispatch decisions for all
generators are made subject to the commitment decisions from
prior epochs. The optimization problem is formulated below.

min zSUC =
∑

s ρs
(
c⊤xs + d⊤ys

)
(1a)

s.t.: ρs (A0xs − b0s) ≥ 0 ∀s ∈ S
(1b)

Ansxns +Bnsyns ≥ bns ∀n ∈ N ,∀s ∈ S
(1c)

yns ∈ {0, 1} ∀n ∈ N ,∀s ∈ S
(1d)

yns = y′n0 ∀n ∈ F̂ ,∀s ∈ S
(1e)

yns = y′nr ∀n ∈ F ,∀r ∈ R,∀s ∈ Sr.
(1f)

Note that the generator dispatch and commitment decisions
are written more succinctly as the column vectors xs =
[x1s, . . . , xNs] and ys = [y1s, . . . , yNs] where appropriate.
Additional decision variables y′n0 and y′nr define the first stage
commitment decisions of slow-start resources and the second
stage commitment decisions of fast-start resources, respec-
tively. Constraint (1b) includes the system-wide constraints
that define each scenario s. Constraints (1c) and (1d) include
generator-specific feasibility and binary constraints, and con-
straints (1e) and (1f) define the nonanticipativity constraints
of slow- and fast-start resources, respectively. The problem’s
parameters include scenario probability ρs, dispatch costs c,
fixed start-up and no-load costs d, system-wide constraint
matrix A0, scenario s’s system requirements b0s, generator n’s
constraint matrices Ans and Bns, and generator n’s constraint
limits bns. Scenario-dependent generator constraints can be
used to model economic offers by wind, solar, or other
renewable resources that have uncertain maximum output, as
well as possible contingency scenarios for traditional thermal
generators. Solutions to (1) provide optimal commitment y∗s
and dispatch x∗

s decisions for each scenario s ∈ S. When the
s is dropped from the notation, it will be understood that x∗

and y∗ refer to the full solution to model (1). For convenience,
z∗ will refer to the optimal expected system cost identified
by (1), and z∗s will similarly to refer to the system cost in
each scenario.

We define the following notation for the nonanticipativity
constraints (1e) and (1f):

Yns :={
yns :

{
yns = y′n0, ∀n ∈ F̂ ,∀s ∈ S, or
yns = y′nr, ∀n ∈ F ,∀s ∈ Sr,∀r ∈ R

}}
.

To simplify notation of the generator-level constraints, we
define feasibility sets utilizing these representations of the
nonanticipativity constraints:

Xns := {(xns, yns) : Ansxns +Bnsyns ≥ bns, yns ∈ {0, 1}}
∀n ∈ N ,∀s ∈ S;

Xn := {(xn, yn) : (xns, yns) ∈ Xns, yns ∈ Yns, ∀s ∈ S}
∀n ∈ N ,

where xn = [xn1, . . . , xnS ] and yn = [yn1, . . . , ynS ] will
refer to generator n’s dispatch and commitment decisions,
respectively, across all scenarios S = {1, . . . , S}.

In addition, we define the sets XC
ns and XC

n to be the convex
hull relaxation of the associated set, i.e.:

XC
ns := conv(Xns); XC

n := conv(Xn).

In general, a compact formulation for XC
ns may be insuffi-

cient to ensure that a compact formulation for XC
n is easily

obtainable [31].
By formulating (1) generically, the proceeding analysis can

be applied to many unit commitment-based (or more generally
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integer programming-based) market designs. In addition to
system power balance, the constraint matrix A0 may include
constraints defining power flows in the transmission system
and ancillary service definitions including spinning reserves,
operating reserves and/or ramping products. Similarly, system
requirements b0s would typically define each scenario based
on different levels of hourly inelastic energy demand and
behind-the-meter solar output. It may also reflect scenario-
specific transmission line limits in cases where dynamic line
ratings are used. Also note that, while demand information
would typically be given as fixed information in the b0s
parameters, the dispatch decisions xns have no explicit sign
restriction and could therefore be used to model controllable
or price-responsive loads in addition to economic offers from
renewable resources and traditional thermal generators.

B. Ex Post Pricing

Prices are calculated after dispatch decisions are decided.
Therefore, the following pricing models consider the scenario
s to be fixed and do not consider the probabilities ρs. This
section will first formulate a few of the standard pricing
models that are found in the electricity pricing literature. The
dual variables of each pricing model constraint are shown in
brackets to the right of each model.

The traditional method to calculate LMPs is formally pre-
sented in [14] and consists of fixing all binary variables to
their optimal value in the solution to (1). It can be written as
follows.

min
xs,ys

zLMP
s = c⊤xs + d⊤ys (2a)

s.t.: A0xs ≥ b0s [λLMP
s ] (2b)

Ansxns +Bnsyns ≥ bns [σLMP
ns ] ∀n ∈ N (2c)

yns = y∗ns [δLMP
ns ] ∀n ∈ N . (2d)

The pricing model (2) has two advantageous properties
since it is a linear program and obtains the same optimal
objective function value as model (1) when weighted across
all scenarios. Similarly to the optimal dispatch and commit-
ment variables x∗ and y∗, for LMP and subsequent pricing
schemes, the notation λLMP indicates the vector of prices in
all scenarios, i.e., λLMP = [λLMP

s ]s∈S .
The model’s prices λLMP are consistent with the socially

optimal production quantities x∗
s in each scenario s, given

that the generators follow the socially optimal commitment
solution y∗s [14]. Since generators may be otherwise unwilling
to follow the commitment schedule y∗s , revenues based on
this traditional method of calculating LMPs are typically
supplemented by make-whole payments equal to the difference
between the generator’s as-offered costs and market revenues,
if positive. It is argued that large make-whole payments tend
to dilute the pricing signals from model (2) [19], which has
motivated attempts to find new pricing policies.

The ex post convex hull pricing (EP-CHP) model, proposed
by [15], is based on minimizing a broad category of side

payments called uplift payments. The pricing model can be
formulated as below.

min
xs,ys

zEP
s = c⊤xs + d⊤ys (3a)

s.t.: A0xs ≥ b0s, [λEP
s ] (3b)

(xns, yns) ∈ XC
ns [σEP

ns ] ∀n ∈ N . (3c)

It will be useful to compare the objective function values of
each pricing model. Since constraint (3c) relaxes the con-
straints (2c) and (2d), it is clear that the EP-CHP model is
a relaxation of the LMP model and therefore zLMP

s ≥ zEP
s .

The subsequent pricing schemes will also refer to the convex
hull constraint set XC

ns.
Arguments in favor of the EP-CHP model are often based

on improved generator dispatch incentives, since the perceived
need for uplift payments is minimized [15], [19]. In contrast to
make-whole payments, uplift is defined by the difference be-
tween the maximum operating profit that a generator can earn
by changing its production schedule and the actual operating
profit it earns by following the production schedule provided
by the ISO. If it is assumed that generators can produce a zero
quantity and therefore earn at least zero operating profit, then
uplift payments are always greater than make-whole payments,
and make-whole payments can be considered a component of
uplift.

The MISO, PJM, ISO-NE, SPP, and NYISO markets have
implemented Extended LMP and fast-start pricing (FSP) mod-
els that have some similarities to the original convex hull pric-
ing proposal by [15] but only allow certain types of generators
under certain conditions to be relaxed [32]. Although some
specifics differ between each market’s implementation pricing
models (see [9]–[12]), the main aspects are captured in the
model formulation below.

min
xs,ys

zF1
s = c⊤xs + d⊤ys (4a)

s.t.: A0xs ≥ b0s, [λF1
s ] (4b)

(xns, yns) ∈ XC
ns [σF1

ns ] ∀n ∈ N (4c)

yns = y∗ns, [δF̂1
ns ] ∀n ∈ F̂ (4d)

yns ≤ y∗ns, [δF1
ns ] ∀n ∈ F . (4e)

Rather than relaxing the commitment constraints of all gen-
erators like the EP-CHP pricing model, the fast-start pricing
model above (FSP-I) only relaxes the commitment variables of
fast-start resources and only if those resources are committed
in the schedule calculated by the ISO. Arguments in favor
of adopting FSP models often make similar, though vague,
appeals to improved price signals and lower uplift or make-
whole payments as previously discussed for the EP-CHP
model. However, the model (4) differs from (3) since far
fewer commitments will typically be relaxed, comparing (2d)
with (4d) and (4e). Therefore model (4) may be seen as only
a small adjustment to the traditional LMP model (2).

An additional FSP model called FSP-II modifies FSP-I to
relax all fast-start resources instead of only those that are
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committed by the ISO. This pricing model is formulated
below.

min
xs,ys

zF2
s = c⊤xs + d⊤ys (5a)

s.t.: A0xs ≥ b0s, [λF2
s ] (5b)

(xns, yns) ∈ XC
ns [σF2

ns ] ∀n ∈ N (5c)

yns = y∗ns, [δF̂2
ns ] ∀n ∈ F̂ (5d)

yns ≤ 1 [δF2
ns ] ∀n ∈ F . (5e)

Due to the binary variable restrictions in each formulation,
it can be seen that (3) is a relaxation of (5), (5) is a
relaxation of (4), and (4) is a relaxation of (2). Therefore,
the pricing model objective functions can be arranged in the
order zLMP

s ≥ zF1
s ≥ zF2

s ≥ zEP
s for each scenario s.

Like EP-CHP and in contrast to FSP-I, prices from FSP-
II may reflect the production costs of fast-start resources that
are not dispatched by the ISO. However, this aspect of FSP-II
and EP-CHP may plausibly be justified by the same appeals
to improved price signals that motivate other modifications to
the traditional LMP model (2).

C. Ex Ante Pricing

A potential shortcoming of ex post pricing methods is that
they may not provide incentives for generators to make effi-
cient commitment decisions ex ante. For example, inefficient
generators, i.e., those that are not committed in the optimal
solution of model (1), may have incentives to self-commit
ex ante if there is an expectation of high ex post prices.
Conversely, efficient generators may fail to make necessary
ex ante arrangements, such as purchasing fuel contracts, if
the expectation of ex post prices is too low [33]. This paper
therefore proposes a new pricing model called ex ante convex
hull pricing (EA-CHP) which attempts to provide the best
possible ex ante incentives.

In contrast to the ex post pricing policies, under which
the spot price can be calculated from a deterministic model
using data from only the realized scenario, EA-CHP computes
a vector of prices covering all possible future states of the
world and allows the prices in any state to be partially de-
pendent upon conditions that might occur in other states. The
appropriate price can then be selected from this vector after
uncertainty is realized. This construction raises an important
practical question regarding how to choose prices when the
scenario realized in real time is not included in the lookahead
stochastic model. Since we are primarily interested in compar-
ing the economic properties of EA-CHP against the ex post
policies, for this analysis we assume that the stochastic unit
commitment problem includes all possible future scenarios.

The EA-CHP model is formulated analogously to the EP-
CHP model for a deterministic unit commitment model, but is
based on the stochastic unit commitment model (1), as shown
below.

min
x,y

zEA =
∑

s ρs
(
c⊤xs + d⊤ys

)
(6a)

s.t.: ρs (A0xs − b0s) ≥ 0, [λEA
s ] ∀s ∈ S (6b)

(xn, yn) ∈ XC
n ∀n ∈ N . (6c)

By construction, model (6) is a convex relaxation of (1). While
the convex hull representation of an individual generator’s
schedule, XC

ns, may have a known compact formulation [34],
[35], it does not necessarily generate a compact description of
XC

n . Accordingly, in the computational experiments we use
a relaxation of (6) which considers the convex hull of every
generator per scenario:

min ẑEA =
∑

s ρs
(
c⊤xs + d⊤ys

)
(7a)

s.t.: ρs (A0xs − b0s) ≥ 0 [λ̂EA
s ] ∀s ∈ S (7b)

(xns, yns) ∈ XC
ns ∀n ∈ N ,∀s ∈ S (7c)

yns = y′n0 ∀n ∈ F̂ ,∀s ∈ S (7d)
yns = y′nr ∀n ∈ F ,∀s ∈ Sr,∀r ∈ R.

(7e)

To compare the objective values zEA and ẑEA with the
other price models, first note that zSUC ≥ zEA ≥ ẑEA since
the EA-CHP model (6) is a relaxation of (1), and (7) is in turn
a relaxation of (6). Since the objective function in (2) is equal
to (1) in each scenario, it is also clear that zSUC = Es[z

LMP
s ].

Additionally, the commitment and dispatch decisions of (3) are
unrestricted by any nonanticipativity constraints such as (7d)
and (7e), so the objective’s expectation is Es[z

EP
s ] ≤ ẑEA. As

a result, objective values are ordered by zSUC = Es[z
LMP
s ] ≥

zEA ≥ ẑEA ≥ Es[z
EP
s ].

The above descriptions of the stochastic unit commitment
problem and pricing models are kept brief for easy reference.
Although the models include simplifying assumptions such
as the discrete probability distribution (ρs, s ∈ S), the for-
mulations are sufficient to illustrate shortcomings of standard
pricing methods and to describe how the proposed EA-CHP
pricing policy’s properties overcome these shortcomings.

D. Forward Markets

Here we construct models for forward markets correspond-
ing to the first stage as well as each node of the second
stage, labeling the first a day-ahead market and the second an
intraday market. We emphasize that the forward market models
are distinct from the stochastic program with which optimal
commitment and dispatch schedules are identified. The for-
ward markets are deterministic unit commitment models that
avoid the need for the system operator to specify scenarios and
probabilities. The key modeling requirement of these markets
is that they do not introduce arbitrage opportunities between
stages. In each forward market, we assume that virtual bidders
participate in a perfectly competitive, risk-neutral manner,
such that prices converge to the expected (or conditionally
expected) spot price under the chosen pricing policy. As such,
the presence or absence of forward markets does not affect
remuneration in expectation but can affect scenario-specific
outcomes. We note the contrast between this assumption and
previous examinations of stochastic market clearing, where
the absence of virtual bidders can lead to inconsistencies
between day-ahead and expected real-time prices [26]. We
do not enforce any constraint on the physical supply quantity
cleared in the day-ahead market, e.g., by setting it equal to
expected demand. Since the price at the expected demand is
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not in general equal to the expected price given uncertainty,
a mismatch between the cleared physical supply and expected
demand can be interpreted as the net position taken by virtual
bidders.

Quantities awarded in the day-ahead market assuming pric-
ing scheme PS ∈ {LMP,EP, F1, F2, EA} are calculated
by solving

min
xDAM ,yDAM

zDAM = c⊤xDAM + d⊤yDAM

− λ
PS (

A0x
DAM − b0

)
(8a)

s.t.: Anx
DAM
n +Bny

DAM
n ≥ bn ∀n ∈ N

(8b)

yDAM
n ∈ {0, 1} ∀n ∈ N .

(8c)

Here λ
PS

= E[λPS
s ], b0 = E[b0s], and bn = E[bns]. As a

result, the forward market is a deterministic unit commitment
problem with the power balance constraint relaxed at a penalty
corresponding to the expected real-time price. The constraints
in Eq. (8b) ensure that generators are awarded a feasible
schedule in the day-ahead market.

Similarly, positions in the intraday market in scenario r
using pricing scheme PS are calculated by solving

min
xIDM
r ,yIDM

r

zIDM
r = c⊤xIDM

r + d⊤yIDM
r

− λ
PS

r

(
A0x

IDM
r − b

r

0

)
(9a)

s.t.: Anx
IDM
nr +Bny

IDM
nr ≥ b

r

n ∀n ∈ N (9b)

yIDM
nr = y

′∗
n0 ∀n ∈ F̂ (9c)

yIDM
nr ∈ {0, 1} ∀n ∈ F . (9d)

Here λ
PS

r = E[λPS
s |s ∈ Sr], b0 = E[b0s|s ∈ Sr], and bn =

E[bns|s ∈ Sr].
Because they depend on the expected (or conditionally

expected) price, commitments and quantities in the forward
markets are contingent on the policy chosen for real-time price
formation. Previous work has demonstrated that in principle,
the presence of virtual bidders can push the solution of
deterministic market clearing models toward a higher-quality
solution of the underlying stochastic problem [17], [21], [36]–
[39]. Our formulation makes it clear that this property depends
on the policy chosen for real-time price formation. In Part 2 of
the paper, we show an example in which the back-propagation
of prices generated under some policies would induce poor
commitment decisions in the day-ahead market. For our anal-
ysis of the financial outcomes in Part 2, we assume that if
the forward markets yield suboptimal decisions, they will be
overruled by a reliability unit commitment process performed
by system operators that restores the optimal commitment but
does not grant any committed generators a financial position.
Along these lines, in the context of model (9), slow-start
generators in the intraday market are fixed to their optimal
commitment in the stochastic unit commitment, rather than
the position awarded in the day-ahead market.

While we include their definition here to make the deter-
ministic nature of the forward markets clear, the remainder of

the analysis in Part 1 focuses on spot prices. We return to the
topic of forward markets in Part 2 of the paper.

III. PROPERTIES OF PRICING POLICIES

The following subsections describe the properties of the
pricing policies in more detail. First, the expected value
of perfect information (EVPI) is introduced for the SUC
problem (1), which can be viewed as either the expected
reduction in production costs with perfect forecast accuracy,
or as the expected regret of ex ante decisions after the ex
post scenario is realized. Next, a Lagrangian dual formulation
of (1) is presented. This Lagrangian formulation develops
an ex ante uplift definition that can be compared with the
ex post uplift definition provided by [15]. It is then proven
that the EA-CHP pricing model minimizes ex ante uplift,
an analogous condition to classical economic equilibrium for
problems with integer variables [15], [40]. Lastly, this section
provides a dual interpretation of the EVPI called the expected
nonanticipativity opportunity cost (ENOC) that is equal to
the difference between the ex post and ex ante uplifts. The
analysis in this section largely follows standard Lagrangian
relaxation procedures for integer programs (e.g., see Section
11.4 in [41] and Chapter 10 in [42]). The analysis demonstrates
the following propositions:

• EVPI becomes positive when ex ante decisions are re-
quired to minimize expected operations costs.

• Lagrangian duality can be applied to integer-constrained
stochastic programs in a similar manner to integer-
constrained deterministic programs.

• Ex post CHP maximizes the Lagrangian dual of the de-
terministic SCUC problem and minimizes ex post uplift.

• Similarly, ex ante CHP maximizes the Lagrangian dual
of the stochastic SCUC problem and minimizes ex ante
uplift.

• The difference between total ex ante uplift and ex post
uplift is a quantity called ENOC that is analogous to a
dual formulation of EVPI.

In summary, the ex ante uplift minimization condition yields
a pricing policy that minimizes incentives to deviate from
the centralized dispatch schedule given profit maximizing
behavior of the market participants, the nonconvex operating
characteristics of their resources, and the need to make plan-
ning decisions in advance under certainty. By analogy to EVPI,
this ex ante pricing policy becomes important if nonanticipa-
tivity prevents market participants from maximizing profit with
perfect foresight of the real time prices.

A. Expected Value of Perfect Information

As described above, EVPI is the expected reduction in
production costs if the future scenarios could be forecasted
with perfect accuracy. To calculate EVPI, the nonanticipativity
constraints in (1) are dropped so that an ex post optimal
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solution can be determined for each scenario. The ex post
optimal unit commitment problem is formulated as

min
x,y

zEPO =
∑

s ρs
(
c⊤xs + d⊤ys

)
(10a)

s.t.: ρs (A0xs − b0s) ≥ 0 ∀s ∈ S (10b)
Ansxns +Bnsyns ≥ bns ∀n ∈ N ,∀s ∈ S (10c)
yns ∈ {0, 1} ∀n ∈ N ,∀s ∈ S. (10d)

Since (10) is a relaxation of (1), the total expected pro-
duction cost is zEPO ≤ zSUC , and the inequality is strict
if a perfectly accurate forecast would necessarily change
decisions that are made ex ante. EVPI is simply EV PI =
zSUC − zEPO, or more explicitly,

EV PI :=

min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys

)
: (xn, yn) ∈ Xn,∀n ∈ N

}

−min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys

)
:

(xns, yns) ∈ Xns,∀n ∈ N ,∀s ∈ S

}
.

(11)

Recall that Xn includes the set of nonanticipativity constraints
(1e) and (1f). Because the two optimizations only differ due to
the presence of nonanticipativity constraints, any difference in
objective values can be solely attributed to the need to make
decisions in advance.

B. Lagrangian Duality
To present the UC problem’s economic properties, the

Lagrangian relaxation of (1) is defined as

L(λ) := min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s)
)
:

(xn, yn) ∈ Xn,∀n ∈ N

}
.

(12)

Note that the price vector λ is a set of real time price vectors
[λs]s∈S . For λ ≥ 0, problem (12) is a relaxation of (1) for the
following reasons: all feasible solutions to (1) are also feasible
in (12), any feasible solution to (1) will have as objective
function value in (12) that is no more than the objective value
in (1), and there may be feasible solutions to (12) that are not
feasible in (1).

Next, let the Lagrangian dual of (1) be defined as

L∗ := max
λ≥0

L(λ). (13)

Similarly, a Lagrangian relaxation can be defined for each
scenario in the ex post optimal UC problem (10) as

L̃s(λs) := min
xs,ys

{
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s) :

(xns, yns) ∈ Xns,∀n ∈ N

}
,

(14)

and a Lagrangian dual as

L̃∗
s := max

λs≥0
L̃s(λs). (15)

Both Lagrangian relaxations (12) and (14) are equivalent
to profit maximization for all market participants, the former
considering nonanticipativity across scenarios and the latter
considering a single scenario.

C. Uplift and Lost Opportunity Costs
As described by [43], uplift consists of two components

called lost opportunity cost and product revenue shortfall. Lost
opportunity cost is the sum of foregone profits due to following
the market operator’s commitment and dispatch instructions
instead of individually profit-maximizing commitment and
dispatch schedules at the given market prices. Product revenue
shortfall is collected to maintain revenue sufficiency (i.e.,the
ability to collect and pay for all market positions, see [44]).
The rest of this section will be used to show that deterministic
analyses of uplift fail to identify how nonanticipativity can im-
pact uplift calculations. Including this consideration results in
identifying a new subcomponent of uplift called the expected
nonanticipativity opportunity cost.

The standard ex post uplift is defined as follows:

UP
s (λs) :=max

xs,ys

{(
A⊤

0 λs − c
)⊤

xs − d⊤ys :

(xns, yns) ∈ Xns,∀n ∈ N

}
−

((
A⊤

0 λs − c
)⊤

x∗
s − d⊤y∗s

)
+ λ⊤

s (A0x
∗
s − b0s) .

(16)

In contrast to the deterministic analysis applied in [15],
Eq. (16) indexes the optimal solution (x∗, y∗) by a scenario
s considered in the stochastic problem (1). To reduce the po-
tential for poor incentives, [15] suggests that market operators
set prices to minimize uplifts that are then paid respectively
to each market participant. Such prices can be defined as the
vector λs ≥ 0 that minimizes UP

s (λs) and can be determined
by solving the Lagrangian dual (15):

min
λs≥0

UP
s (λs)

= min
λs≥0

{
max
xs,ys

{(
A⊤

0 λs − c
)⊤

xs − d⊤ys :

(xns, yns) ∈ Xns,∀n ∈ N
}
− λ⊤

s b0s + z∗s

}

= min
λs≥0

max
xs,ys

{
−
(
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s)
)
:

(xns, yns) ∈ Xns,∀n ∈ N
}
+ z∗s

= z∗s −max
λs≥0

min
xs,ys

{
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s) :

(xns, yns) ∈ Xns,∀n ∈ N
}

= z∗s − L̃∗
s.
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That is, the minimum ex post uplift is exactly equal to
the duality gap between the optimal schedule cost z∗s and
Lagrangian cost L̃∗

s in each scenario s.
An alternative approach would be to apply nonanticipativity

constraints on the commitment and dispatch decisions in each
potential scenario, resulting in the following ex ante uplift
definition:

UA(λ) := max
x,y

{∑
s

ρs

((
A⊤

0 λs − c
)⊤

xs − d⊤ys

)
:

(xn, yn) ∈ Xn,∀n ∈ N
}

−
∑
s

ρs
(
λ⊤
s b0s − c⊤x∗

s − d⊤y∗s
)
.

(17)

In contrast to the ex post uplift, the ex ante uplift defined
above requires that the profit maximizing schedules obey the
same nonanticipativity constraints that are satisfied in the set
of socially optimal schedules, {(x∗

s, y
∗
s ),∀s ∈ S}, from the

solution to (1).
Following the same steps as before, minimizing ex ante

uplift is equivalent to solving the SUC problem’s Lagrangian
dual (13).

min
λ≥0

UA(λ) = zSUC − L∗

Assuming that the ex ante optimal commitment solution is
chosen, then zSUC =

∑
s ρsz

∗
s and definitions (16) and (17)

imply that the expected ex post uplift must be greater than
or equal to the ex ante uplift, i.e., E[UP

s (λs)] ≥ UA(λ). Ac-
cordingly, the ex post uplift definition may include some uplift
that is not included in the ex ante definition. This difference
will be called the expected nonanticipativity opportunity cost
(ENOC), UN (λ), and is defined as follows:

UN (λ) :=
∑
s

ρsU
P
s (λs)− UA(λ)

=
∑
s

ρs

(
max
x,y

{(
A⊤

0 λs − c
)⊤

xs − d⊤ys :

(xns, yns) ∈ Xns,∀n ∈ N
})

−max
x,y

{∑
s

ρs

((
A⊤

0 λs − c
)⊤

xs − d⊤ys

)
:

(xn, yn) ∈ Xn,∀n ∈ N
}
.

(18)

Notice that (18) can be rewritten as the difference of two
minimization problems:

UN (λ) = min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s A0xs

)
:

(xn, yn) ∈ Xn,∀n ∈ N
}

−min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s A0xs

)
:

(xns, yns) ∈ Xns,∀n ∈ N
}

+
∑
s

(λsb0s − λsb0s) .

Further,

UN (λ) = min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s)
)
:

(xn, yn) ∈ Xn,∀n ∈ N
}

−min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s)
)
:

(xns, yns) ∈ Xns,∀n ∈ N
}

= L(λ)−
∑
s

ρsL̃s(λs).

Whereas EVPI was previously defined as the cost difference
between (1) and (10), ENOC is defined above as the difference
of the Lagrangian duals of the same two optimization prob-
lems. In other words, ENOC is a dual formulation of EVPI
that depends on the the real time pricing policy vectors λ =
[λs]s∈S rather than commitment and dispatch solutions. It can
be deduced from the ENOC definition (18) that ENOC is a
component of the lost opportunity cost component of uplift
described in (16). ENOC therefore represents the component
of ex post uplift that would inappropriately compensate re-
sources given that the realized market prices could not have
been known in advance with perfect foresight.

Remark III.1. The derived expressions for ex ante uplift (17)
and ENOC (18) are defined in the context of the three-stage
stochastic unit commitment model (1), which is a simplification
of the real-world operational problem. We note, however, that
the existence of a gap between ex ante and ex post uplift only
requires that nonanticipativity constraints will limit the ability
of market participants to maximize their operating profits in all
possible scenarios. While more sophisticated stochastic models
of real-world operations would be able to generate better
estimates of the magnitude of the gap, our focus is instead
on a clear exposition of the directional consequences.

D. Primal Convex Hull Equivalence

The ex post CHP model (3) and ex ante CHP model (6)
were previously described in terms of minimizing a specific
set of side-payments called uplift. Those statements can be
made more precise now that the ex post and ex ante uplift
definitions, (16) and (17), have been provided. Uplift payments
are intended to remove incentives for participants to deviate
from the socially optimal schedule calculated by the market
operator since they would ensure that all participants receive
their maximum profit, and they would be paid on condition that
the participant follows the market operator’s dispatch schedule
to a reasonable degree of accuracy.

Supposing that the ex ante CHP model (6) produces a set
of prices λEA that solve the Lagrangian dual problem (13),
then it would be clear that λEA minimizes the expected ex
ante uplift in equation (17). Accordingly, the following proofs
show that the prices calculated by solving (6) in fact also
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solve the Lagrangian dual problem (13). Let the ex ante CHP
model’s Lagrangian relaxation be defined as follows:

LEA(λ) = min
x,y

{∑
s

ρs
(
c⊤xs + d⊤ys − λ⊤

s (A0xs − b0s)
)
:

(xn, yn) ∈ XC
n ,∀n ∈ N

}
.

Lemma III.1. Suppose LEA∗ = maxλ≥0 L
EA(λ) is the

Lagrangian dual solution for problem (6). Then LEA∗ = L∗.

Proof. Proof of Lemma III.1: For given λ, the feasible region
of L(λ) only differs from the feasible region of LEA(λ) in
that the variables (x, y) are optimized over the possibly non-
convex set Xn for each n ∈ N rather than the convex hull
relaxation XC

n . Clearly, L(λ) ≥ LEA(λ). Since the optimal
points (x∗

n, y
∗
n) ∈ XC

n for LEA will be extreme, the relaxed
solution will be such that (x∗

n, y
∗
n) ∈ Xn for every n ∈ N .

Therefore LEA(λ) = L(λ) for every λ, so LEA∗ = L∗.

Theorem III.1. Suppose λEA is the optimal dual variable of
constraint (6b). Then zEA = LEA∗ = L∗, and λEA solves
L∗ = L(λEA).

Proof. Proof of Theorem III.1: For the first part of the
theorem, note that (6) is a convex linear program. Therefore,
strong duality implies that zEA = LEA∗. The second equality
LEA∗ = L∗ is implied by Lemma III.1.

The second part of the proof will show, first, that
LEA(λEA) ≤ zEA, and second, that LEA(λEA) ≥ zEA. As a
result, LEA(λEA) = L∗, so we can conclude that λEA solves
the Lagrangian dual problem.

For the upper bound, let (xEA, yEA) be the optimal primal
solution to (6) and λEA the optimal dual variable to constraint
(6b). Then we have the following upper bound based on the
minimization in L(λEA) and complementary slackness in the
primal and dual solutions of (6):

L(λEA) ≤
∑
s

ρs

(
c⊤xEA

s + d⊤yEA
s

− (λEA)⊤
(
A⊤

0 x
EA
s − b0s

))
=

∑
s

ρs
(
c⊤xEA

s + d⊤yEA
s

)
= zEA.

For the lower bound, it must be true that L(λEA) ≥
LEA(λEA) since LEA(λ) is a relaxation of minimization
problem L(λ). Further, since LEA(λ) is a convex optimization
problem, strong duality implies that LEA(λEA) = zEA.
Applying the first part of the proof, we have shown that
L(λEA) = L∗. Therefore, λEA is a solution to the Lagrangian
dual problem.

Corollary III.1. Suppose L̂EA(λ) is the Lagrangian relax-
ation of (7) and λ̂EA is the optimal dual variable of constraint
(7b). Then ẑEA = L̂EA(λ̂EA) ≤ L∗.

Proof. Proof: The proof is immediate from the fact that (7) is
a relaxation of (6).

Remark III.2. There may be considerable difficulty in solv-
ing either the exact EA-CHP model (6) or the Lagrangian
problem LEA∗. If the relaxed EA-CHP model (7) is solved
instead, there may be uncertainty whether the resulting prices
provide similar economic properties as the theoretically ideal
prices. Even if the approximation is unable to reproduce
the theoretically ideal price vectors, it is unlikely that the
approximation introduces significantly different incentives so
long as ex ante uplift is nearly minimized. From Corollary
III.1, the increase in ex ante uplift due to approximation
is zEA − ẑEA ≥ 0, which will be close to zero if (7)
is a close approximation of (6). In addition, recalling the
result of Corollary 1 in [4], there is an upper bound on
the redistribution of market surplus that results from sub-
optimal scheduling decisions, provided that the pricing model
is a convex relaxation of a mixed-integer scheduling problem.
Those conditions are satisfied by the approximated ex ante
pricing model (6) or by any other reasonably tight relaxation
of the stochastic scheduling problem, which implies a limited
amount of economic distortions in the approximated model.

IV. CONCLUSION

This two-part paper examines the impact of uncertainty on
the design and analysis of policies for price formation in non-
convex markets. Part 1 develops a theoretical framework to
distinguish the effects of uncertainty and non-convexity on
price formation. In Part 2 of the paper, we complement the
theoretical development in Part 1 with two examples demon-
strating the differences between the idealized benchmark of ex
ante convex hull pricing and existing policies. The examples
illustrate the potential consequences of a failure to make this
distinction, including poor incentives for commitment in short-
term operations and poor incentives for flexibility in long-term
investments.
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